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Abstract 
SOILSIM is a GIS-based modelling framework for the spatial interpolation of soil charac-
teristics from individual points to a raster map. It was designed for providing a reliable 
approximation of the hydrological characteristics of the soils in small alpine catchments 
with a minimum of input required, and fully dependent on open source products (GRASS 
and R). A table representing the soil characteristics and a set of habitat maps are required as 
input. The program operates in two major steps. (1) A linear multiple regression is fitted 
for each soil variable (the predictors are chosen using ANOVA). The regression equations 
are then applied to raster maps of the predictor variables. (2) Hydrologically relevant soil 
characteristics (e.g. field capacity, saturated hydraulic conductivity) are calculated as re-
sponse to the modelled soil variables. 
SOILSIM was applied to the Stampfanger catchment (near Kitzbühel, Tyrol, Austria; 
23.1 km²). The results of the study indicated that the method is quick and easy, but that it 
has to be applied with much caution and with qualitatively and quantitatively sufficient 
input data in order to provide reliable predictions for the variables under investigation. 

1 Introduction 

The characteristics of the soil of a certain habitat are determined by a complex interaction 
of influences like climate, substrate, relief, vegetation, soil fauna, humans, and the timespan 
since the beginning of soil development. The dominant conditioning variables (predictors) 
for the soil characteristics are not always obvious (TASSER et al. 1998). The situation be-
comes even more complex due to the strong interrelation between soil and vegetation. 
Furthermore, the soil characteristics in mountain habitats vary on different spatial scales, 
from the sub-meter scale (for example on rock fall deposits) to the scale of kilometres as 
response to vertical temperature or precipitation gradients (compare HILLER et al. 2002; 
HITZ et al. 2002). 
Soil characteristics themselves are usually measured or estimated at individual points, using 
samples obtained at soil profiles and boreholes. This information is sufficient for some, but 
nor for all purposes. Modelling approaches for hydrological assessments of catchments, for 
example, require the knowledge of the soil characteristics over the entire study area which 
are difficult to measure. A dense network of sampling sites, in combination with sophisti-
cated equipment, is therefore necessary for such studies. In practice, both resources time 
and money are limited. The scale of existing soil maps is usually too small to be used for 
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modelling of hydrological processes (DE GRUIJTER et al. 1997). This is particularly true for 
mountain regions. 
An alternative way is to create a smaller set of sampling sites, including all major types of 
habitats and covering a wide range of combinations of habitat conditions that are supposed 
to be important for the soil characteristics. Such a dataset can be interpolated to the whole 
study area, using GIS in combination with an appropriate statistical method. A major re-
quirement for following this approach is the full knowledge of the spatial distribution of the 
habitat conditions (climate, topography, substrate, landcover). 
Various models were applied for this purpose. MCBRATNEY et al. (2003) provided a de-
tailed overview of methods used in the past, discussing generalized linear models, regres-
sion and classification trees, neural networks, fuzzy systems, and geostatistics. 
Many of these methods are only applicable to easy measurable soil characteristics like soil 
depth, soil skeleton, etc. The indirect derivation of hydrological soil characteristics has 
therefore been the subject of several studies (e.g. VEREECKEN 1995, UFZ-
Umweltforschungszentrum Leipzig-Halle 2001, LEHMANN et al. 2005), resulting in a cer-
tain number of approaches. 
Within the framework of this study FECHT et al. (2005) used geostatistics (cluster analysis) 
in order to delineate subareas with similar combinations of conditioning factors for the 
Ruggbach study area (Vorarlberg, Austria). However, it appeared to be problematic to fill 
these classes with content (soil variables). Hence it was aimed at developing a simple, data-
extensive method (soil spatial distribution model: SOILSIM) for (1) directly modelling soil 
variables from predictor variables; and (2) deriving hydrologically relevant soil characteris-
tics from simple, easily measurable variables. The model was tested for the Stampfanger 
catchment (Figure 1). 

 
Figure 1: The Stampfanger catchment. 
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2 Study area 

The Stampfanger catchment is located in the municipality of Söll (NW of Kitzbühel, Tyrol, 
Austria). It comprises an area of 23.1 km². The terrain is mountainous, but in general it is 
not very steep and rocky (except a small part in the N). It extends from about 640 m up to 
1,827 m a.s.l. (Hohe Salve). The majority of the catchment is part of the Greywacke Zone, 
with a mixture of different rock types, including some volcanics. The NW edge is part of 
the Northern Limestone Alps. The majority of the area, however, is covered with till of 
different thickness, and with alluvium. The dominant landcover types are mixed forest on 
the lower slopes, spruce forest on the middle slopes and pastures and meadows in the upper 
part of the catchment. The lowest part carries meadows and human settlements. The catch-
ment has been chosen for this study due to the availability of vegetational, geological, cli-
matic and hydrological data (Moran et al. 2005). 

3 Methods 

SOILSIM is based on a combination of the GRASS GIS (http://grass.itc.it) and the R statis-
tical software (http://www.r-project.org), both distributed under the open source license. 
The model was realized as a shell script with integrated python, R and GRASS functions. It 
requires soil data for various points and a number of habitat raster maps as input. The 
model involves the following steps (compare McBratney et al. 2003): (1) preprocessing of 
habitat variables, (2) choosing a set of predictors from the habitat variables, (3) fitting re-
gression models for explaining the soil variables, (4) applying these relationships to the 
habitat maps, (5) relating the soil variables to hydrological characteristics and applying the 
relationship to raster maps.  
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Figure 2: Illustration of the work flow of SOILSIM. Spatial datasets (raster maps) are 

shaded, input is underlined, mathematical operations are written in italic letters. 
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3.1 Soil sampling 
Soil data was obtained at 52 study sites in the Stampfanger catchment. The sites were cho-
sen subjectively in order to cover a wide range of different habitats. A soil auger and soil 
profiles were used to investigate the variables listed in Table 1. 

Table 1: Soil variables under investigation 

soil variable [unit] method 
coordinates [m UTM] GPS device 
total soil depth [mm]  measured with soil auger (“Pürckhauer”), values above 

100 cm were recorded as 100 cm 
depth of the A horizon [cm]  measured at profile 
pH [-] measured at profile using field kit; only for A horizon 
color [-] estimated using Munsell Soil Color Charts; only for A 

horizon 
organic content [vol-%]  calculated from pH, colour and texture (RENGER et al. 

1987; SCHLICHTING et al. 1995) only for A horizon, set to 
0 for the other horizons 

texture [μm] estimated from the profiles and the soil auger using fin-
ger test and converted into average grain size using tabu-
lar data (SCHLICHTING et al. 1995) 

bulk density [kg dm-3]  estimated at profile (SCHLICHTING et al. 1995) separately 
for A horizon and remaining horizons 

soil skeleton [vol-%]  estimated at profile separately for A horizon and remain-
ing horizons 

 

3.2 Preparing habitat maps 
Raster maps representing the potential predictor variables for the spatial distribution of the 
soil variables were generated using a DEM (20 m resolution), a geological map, a land-
cover map and meteorological data. 
 

• the cumulative air temperature of the growing season (TCUM) was calculated using 
the DEM and temperature data from a meteorological station in the vicinity, and a verti-
cal temperature gradient. It was corrected for aspect using solar irradiation (r.sun) and 
an empirical relationship (Welpmann 2003). 

• the substrate type (STYPE) was derived from a geological map and coded with 1 = 
silicate, 2 = intermediate and 3 = carbonate. It was considered numeric. 

• the substrate physical properties (SPHYS) were also derived from the geological map 
and coded with 1 = bedrock, 2 = block material, 3 = finer material (alluvium, moraine). 
It was considered as numeric, too. 

• slope (SLOPE) in degrees was derived from a DEM (r.slope.aspect). 

• the topographic index (TIND) was derived from a DEM, too (r.topidx). 
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• the C/N ratio of the litter (CNRAT) was integrated assigning average values derived 
from the literature (Scheffer & Schachtschabel 2002) to the landcover units. 

• anthropogenic disturbance (DIST) was roughly estimated from the landcover map:  
1 = forest (little disturbance), 2 = meadows and pastures (intermediate disturbance), 
3 = skiing slopes and cultivated places (heavy disturbance). The variable was consid-
ered as numeric. 

TCUM, SLOPE, CNRAT, TIND and DIST are generated automatically within the SOIL-
SIM framework. The values of all predictor variables at the study sites are extracted from 
the map (r.what function of GRASS) and joined to the soil variables table. 

3.3 Analysis of variance (ANOVA) 
The purpose of the analysis of variance in general is to investigate whether the variance of 
a continuous variable can be explained by one or more categorical independent variables 
(predictors). The method is based on the F-test. Each soil variable (Table 1) was tested 
against each predictor (as categorial variable) in order to determine the variables to be used 
in the subsequent regression analysis. For each soil variable the three most significant pre-
dictors were used for multiple regression as the size of the dataset did not allow for larger 
numbers. The critical level of significance was set to 0.10 (instead of using the standard 
value of 0.05), and predictors with higher values were excluded. ANOVA was performed 
using the R statistical software. The analysis itself is included in the SOILSIM framework. 
The choice of significant predictor variables and the formulation of the regression models 
have to be performed manually. 

3.4 Regression analysis and map generation 
Linear multiple regression is a method of multivariate statistics that is widely used in vari-
ous fields of science and technology. The method was applied in order to establish mathe-
matical relationships between the soil variables (Table 1) and a set of predictor variables, 
the latter selected in accordance with the results of the ANOVA. The relationships, com-
bined with the predictor maps, were then used for the generation of raster maps represent-
ing the spatial distribution of the soil variables. This process is fully included in the SOIL-
SIM framework. For the regression itself, the data is automatically handed over to the R 
statistical software and subsequently returned to GRASS. 

3.5 Hydrological assessment 
The hydrologically relevant characteristics of a soil - or a soil horizon - are determined by a 
complex interplay of texture, bulk density, organic content, and soil skeleton. Lehmann et 
al. (2005) provided a table relating field capacity FC [mm] and saturated hydraulic conduc-
tivity kf [cm day-1] to texture, bulk density and organic content. In order to allow the im-
plementation of these relationships into SOILSIM a conversion into a continuous 
mathematical relationship was required. This was done using linear multiple regression 
models. 

29,50250,272,2301390.0 −⋅−⋅+⋅= Css ktFC ρ  Equation (1), 

and 
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466.4275.3003880.04849.7 +⋅−⋅⋅= sst
f ek ρ  Equation (2). 

ts represents the texture as average grain size [μm], rs the bulk density [kg m-3], and kc the 
organic content [vol.-%]. The R² value for FC did not exceed 0.33, but due to lacking al-
ternatives the approach was applied. For kf, R² was 0.77. The total water storing capacity of 
the soil was calculated from field capacity and soil depth (soil skeleton was subtracted), 
separated for the A horizon and the remaining soil column. 
The permanent wilting point PWP [mm] depends primarily on the texture. FREY & LÖSCH 
(1998) provided values for clayey, silty and sandy soils in form of a diagram. By convert-
ing the texture into an average grain size a simple linear regression could be applied to 
express PWP  (R² = 0.99): 

61.2172.17 +⋅−= stPWP  Equation (3). 

The pore volume Vp [%] depends primarily on the bulk density of the soil, and only to a 
lesser extent on the texture. SCHLICHTING et al. (1995) provide tabular data relating bulk 
density and pore volume, that was used to fit a simple linear regression (R² = 1.00): 

 55.8690.28 +⋅−= sPV ρ  Equation (4). 

PWP and Vp were lumped for the entire soil column, without distinguishing different hori-
zons. The whole process is fully integrated into the SOILSIM framework, using the 
r.mapcalc function of GRASS as the major tool. 

4 Results 

4.1 ANOVA 
The results of the ANOVA are summarized in Table 2. The soil variables appear to be well 
explained by the chosen predictors as the variance of each soil variable is successfully 
explained by at least one, but in most cases two to four predictors. Cumulative temperature, 
slope angle and substrate are the most powerful predictors for the distribution of soil char-
acteristics. 

4.2 Regression analysis 
Table 3 represents the results of the regression analysis. The results for all soil variables, 
except the soil skeleton of the A-horizon, are significant at the 0.10 level, but total soil 
depth and texture are not significant at the 0.05 level of p. The results for all of the soil 
variables have in common that they scatter considerably around the regression line, result-
ing in low values for R². 
 
 
 



Martin Mergili, Clemens Geitner, Andrew Moran, Michael Fecht and Johann Stötter 

Table 2: p-values of the ANOVA of the soil (vertical) and predictor variables (horizon-
tal). Relationships that were used for the regression analysis are written in bold. 

 TCUM SLOPE TIND CNRAT STYPE SPHYS DIST 
 total depth   0,063   0,098   0,177   0,163   0,023   0,023 0,268 
 depth A   0,013   0,249   0,395   0,464   0,599   0,257 0,661 
 org. content   0,001   0,935   0,007   0,341   0,006   0,000 0,400 
 texture   0,204   0,027   0,037   0,354   0,454   0,677 0,646 
 density A   0,495   0,078   0,085   0,001   0,581   0,879 0,006 
 density B,C   0,014   0,001   0,006   0,373   0,387   0,127 0,482 
 skeleton A   0,477   0,504   0,967   0,599   0,007   0,187 0,376 
 skeleton B,C   0,793   0,006   0,958   0,710   0,023   0,022 0,844 

Table 3: Predictors used in the regression analysis for the soil variables, values for multi-
ple R² and levels of significance p. 

   predictor 1   predictor 2   predictor 3        R²      p 
 total depth     STYPE     SPHYS     TCUM     0,133   0,075 
 depth A     TCUM     ---     ---     0,090   0,031 
 org. content     SPHYS     TCUM     STYPE     0,421   0,000 
 texture     SLOPE     TIND     ---     0,114   0,052 
 density A     CNRAT     DIST     SLOPE     0,270   0,002 
 density B,C     SLOPE     TIND     TCUM     0,280   0,001 
 skeleton A     STYPE     ---     ---     0,013   0,417 
 skeleton B,C     SLOPE     SPHYS     STYPE     0,199   0,013 

 
As the results provided by the model include a large number of maps, it is only possible to 
discuss some of them. 
The maps representing total soil depth and density of the A horizon are shown in Figure 3. 
Both of them correspond to the expected patterns. The measured variables were compared 
with the modelled variables at the coordinates of the study sites. The prediction was satis-
factory for the majority of the study sites, but for some sites measurements and model re-
sults diverged considerably due to a number of restrictions of the model used (compare 
discussion). 
Figure 4 shows the map of the total water storing capacity of the soil, and the saturated 
hydraulic conductivity. The meadows and heavily influenced places in the valley showed 
comparatively low storing capacities and hydraulic conductivities, compared with forest, 
meadows and pastures at higher elevations. A surprising result was the fact that the highest 
capacities were related to block deposits. This pattern may be related to the less dense soils 
at these sites, but it is also related to the insufficient representation of skeleton content and 
depth of the A horizon by the model (compare R² and p in Table 3). 
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Figure 3: Predicted total soil depth (left) and density of the A horizon (right) in the study 

area. 

 
Figure 4: Modelled maps representing the water storing capacity of the soil and the satu-

rated soil hydraulic conductivity in the study area. 

5 Discussion 

The application of multiple linear regression for predictive soil modelling in the Stamp-
fanger catchment, as demonstrated using SOILSIM, illustrates the potential of this tech-
nique to be integrated into GIS environments in general and into a combination of the open 
source products GRASS and R in particular. It illustrates, however, also the problems con-
nected to this technique. Although most of the relationships established in this study may 
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be considered as significant, they show a large amount of scatter, leading to rather unsatis-
factory representations of the real conditions. This phenomenon may be related to various 
reasons: 
 

• Many relationships in nature are not linear, but follow an exponential, polynomial or 
other nonlinear function. A dataset of 53 samples is small for an alpine catchment (HITZ 
et al. 2002) and not sufficient to allow the use of nonlinear multiple regression. 

• Not all of the soil variables follow a symmetric distribution. Skewness of the variables 
involved may distort the regression results considerably. 

• The transformation of tabular data into regression equations (as attempted for the field 
capacity) is problematic. 

• The data obtained at the study site may be insufficient: total soil depth was only re-
corded until 100 cm (limited by the length of the Pürckhauer auger). Some other vari-
ables were estimated and are therefore susceptible to subjectivity, or they were meas-
ured using heuristic field methods in order to save time and money. 

• The spatial scale at which soil characteristics undergo changes may be much larger 
(metres) than the spatial resolution used in the study (tens of metres). 

• The most important reason, however, is probably the insufficient knowledge of the 
predictor variables. While topographic and to some extent also climatological variables 
were available in sufficient detail, this was not the case for the substrate and particularly 
for the intensity of anthropogenic (and anthropo-zoogenic) influence. In addition, the 
consideration of ordinal values as numeric could bias the results as well as the conver-
sion of the texture classes into average grain sizes. 

It can be concluded that multiple linear regression shows a certain potential for predictive 
spatial modelling of soil variables. However, it has to be applied with caution.  It is easy to 
produce nicely looking, colourful maps that even look realistic with this method, but gen-
erating reliable, scientifically valuable maps is a different task that requires large datasets 
of soil variables and carefully prepared predictor maps. Uncertainties, however, will always 
remain in environmental models (ODEH & MCBRATNEY 2001) as phenomena in nature are 
not fully predictable. 
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